Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform
نویسندگان
چکیده
Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieutype instability is observed. Keywords—Offshore platforms, stability, postulated failure, dynamic tether tension.
منابع مشابه
EFFICIENT NUMERICAL DYNAMIC ANALYSIS OF TENSION LEG PLATFORMS UNDER SEA WAVE LOADS
However it is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable methods for numerical integration. The modified Euler method (MEM) is a simple nume...
متن کاملStability of the Modified Euler Method for Nonlinear Dynamic Analysis of TLP
Efficiency of numerical methods is an important problem in dynamic nonlinear analyses. It is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable meth...
متن کاملSeismic Reliability Evaluation of the Jacket Structure of an Offshore Platform Based on Nonlinear Time History Analyses
Regarding the previous earthquake damages in offshore structures, as vital structures in the oil and gas industries, it is important that their seismic design will be performed with very high reliability. Accepting the Nonlinear Time History Analyses (NLTHA) as the most reliable seismic analysis method, in this paper an offshore platform of jacket type with the height of 304 feet and with a dec...
متن کاملData on conceptual design of cryogenic energy storage system combined with liquefied natural gas regasification process
This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the ...
متن کاملTension Leg Platform Design Optimization for Vortex Induced Vibration
Tension Leg Platform design is a challenging and popular area of research in the offshore oil industry. In order to compete in the International Student Offshore Design Competition (ISODC), a Tension Leg Platform (TLP) was designed. Our TLP design addresses five fundamental areas of technical competency (General Arrangement and Overall Hull/System Design, Weight, Buoyancy and Stability, Global ...
متن کامل